When playing around and experimenting with Three.js ShaderMaterial I often want to take a look at how the standard Three.js materials are done. Looking through the code or constantly outputting the shaders in the javascript console is a pain in the arse. I though I would post them here for future reference and in case anyone else was interested.
NOTE: These were output from Three.js version 70, three.js materials have changed a lot since then.
MeshBasicMaterial
Vertex Shader
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )
varying vec2 vUv;
uniform vec4 offsetRepeat;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vUv2;
#endif
#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG )
varying vec3 vReflect;
uniform float refractionRatio;
#endif
#ifdef USE_COLOR
varying vec3 vColor;
#endif
#ifdef USE_MORPHTARGETS
#ifndef USE_MORPHNORMALS
uniform float morphTargetInfluences[ 8 ];
#else
uniform float morphTargetInfluences[ 4 ];
#endif
#endif
#ifdef USE_SKINNING
uniform mat4 bindMatrix;
uniform mat4 bindMatrixInverse;
#ifdef BONE_TEXTURE
uniform sampler2D boneTexture;
uniform int boneTextureWidth;
uniform int boneTextureHeight;
mat4 getBoneMatrix( const in float i ) {
float j = i * 4.0;
float x = mod( j, float( boneTextureWidth ) );
float y = floor( j / float( boneTextureWidth ) );
float dx = 1.0 / float( boneTextureWidth );
float dy = 1.0 / float( boneTextureHeight );
y = dy * ( y + 0.5 );
vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );
vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );
vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );
vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );
mat4 bone = mat4( v1, v2, v3, v4 );
return bone;
}
#else
uniform mat4 boneGlobalMatrices[ MAX_BONES ];
mat4 getBoneMatrix( const in float i ) {
mat4 bone = boneGlobalMatrices[ int(i) ];
return bone;
}
#endif
#endif
#ifdef USE_SHADOWMAP
varying vec4 vShadowCoord[ MAX_SHADOWS ];
uniform mat4 shadowMatrix[ MAX_SHADOWS ];
#endif
#ifdef USE_LOGDEPTHBUF
#ifdef USE_LOGDEPTHBUF_EXT
varying float vFragDepth;
#endif
uniform float logDepthBufFC;
#endif
void main() {
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )
vUv = uv * offsetRepeat.zw + offsetRepeat.xy;
#endif
#ifdef USE_LIGHTMAP
vUv2 = uv2;
#endif
#ifdef USE_COLOR
#ifdef GAMMA_INPUT
vColor = color * color;
#else
vColor = color;
#endif
#endif
#ifdef USE_SKINNING
mat4 boneMatX = getBoneMatrix( skinIndex.x );
mat4 boneMatY = getBoneMatrix( skinIndex.y );
mat4 boneMatZ = getBoneMatrix( skinIndex.z );
mat4 boneMatW = getBoneMatrix( skinIndex.w );
#endif
#ifdef USE_ENVMAP
#ifdef USE_MORPHNORMALS
vec3 morphedNormal = vec3( 0.0 );
morphedNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];
morphedNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];
morphedNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];
morphedNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];
morphedNormal += normal;
#endif
#ifdef USE_SKINNING
mat4 skinMatrix = mat4( 0.0 );
skinMatrix += skinWeight.x * boneMatX;
skinMatrix += skinWeight.y * boneMatY;
skinMatrix += skinWeight.z * boneMatZ;
skinMatrix += skinWeight.w * boneMatW;
skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;
#ifdef USE_MORPHNORMALS
vec4 skinnedNormal = skinMatrix * vec4( morphedNormal, 0.0 );
#else
vec4 skinnedNormal = skinMatrix * vec4( normal, 0.0 );
#endif
#endif
#ifdef USE_SKINNING
vec3 objectNormal = skinnedNormal.xyz;
#elif defined( USE_MORPHNORMALS )
vec3 objectNormal = morphedNormal;
#else
vec3 objectNormal = normal;
#endif
#ifdef FLIP_SIDED
objectNormal = -objectNormal;
#endif
vec3 transformedNormal = normalMatrix * objectNormal;
#endif
#ifdef USE_MORPHTARGETS
vec3 morphed = vec3( 0.0 );
morphed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];
morphed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];
morphed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];
morphed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];
#ifndef USE_MORPHNORMALS
morphed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];
morphed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];
morphed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];
morphed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];
#endif
morphed += position;
#endif
#ifdef USE_SKINNING
#ifdef USE_MORPHTARGETS
vec4 skinVertex = bindMatrix * vec4( morphed, 1.0 );
#else
vec4 skinVertex = bindMatrix * vec4( position, 1.0 );
#endif
vec4 skinned = vec4( 0.0 );
skinned += boneMatX * skinVertex * skinWeight.x;
skinned += boneMatY * skinVertex * skinWeight.y;
skinned += boneMatZ * skinVertex * skinWeight.z;
skinned += boneMatW * skinVertex * skinWeight.w;
skinned = bindMatrixInverse * skinned;
#endif
#ifdef USE_SKINNING
vec4 mvPosition = modelViewMatrix * skinned;
#elif defined( USE_MORPHTARGETS )
vec4 mvPosition = modelViewMatrix * vec4( morphed, 1.0 );
#else
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
#endif
gl_Position = projectionMatrix * mvPosition;
#ifdef USE_LOGDEPTHBUF
gl_Position.z = log2(max(1e-6, gl_Position.w + 1.0)) * logDepthBufFC;
#ifdef USE_LOGDEPTHBUF_EXT
vFragDepth = 1.0 + gl_Position.w;
#else
gl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;
#endif
#endif
#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )
#ifdef USE_SKINNING
vec4 worldPosition = modelMatrix * skinned;
#elif defined( USE_MORPHTARGETS )
vec4 worldPosition = modelMatrix * vec4( morphed, 1.0 );
#else
vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
#endif
#endif
#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG )
vec3 worldNormal = mat3( modelMatrix[ 0 ].xyz, modelMatrix[ 1 ].xyz, modelMatrix[ 2 ].xyz ) * objectNormal;
worldNormal = normalize( worldNormal );
vec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );
#ifdef ENVMAP_MODE_REFLECTION
vReflect = reflect( cameraToVertex, worldNormal );
#else
vReflect = refract( cameraToVertex, worldNormal, refractionRatio );
#endif
#endif
#ifdef USE_SHADOWMAP
for( int i = 0; i < MAX_SHADOWS; i ++ ) {
vShadowCoord[ i ] = shadowMatrix[ i ] * worldPosition;
}
#endif
}
Fragment Shader
uniform float opacity;
#ifdef USE_COLOR
varying vec3 vColor;
#endif
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )
varying vec2 vUv;
#endif
#ifdef USE_MAP
uniform sampler2D map;
#endif
#ifdef USE_ALPHAMAP
uniform sampler2D alphaMap;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vUv2;
uniform sampler2D lightMap;
#endif
#ifdef USE_ENVMAP
uniform float reflectivity;
#ifdef ENVMAP_TYPE_CUBE
uniform samplerCube envMap;
#else
uniform sampler2D envMap;
#endif
uniform float flipEnvMap;
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )
uniform float refractionRatio;
#else
varying vec3 vReflect;
#endif
#endif
#ifdef USE_FOG
uniform vec3 fogColor;
#ifdef FOG_EXP2
uniform float fogDensity;
#else
uniform float fogNear;
uniform float fogFar;
#endif
#endif
#ifdef USE_SHADOWMAP
uniform sampler2D shadowMap[ MAX_SHADOWS ];
uniform vec2 shadowMapSize[ MAX_SHADOWS ];
uniform float shadowDarkness[ MAX_SHADOWS ];
uniform float shadowBias[ MAX_SHADOWS ];
varying vec4 vShadowCoord[ MAX_SHADOWS ];
float unpackDepth( const in vec4 rgba_depth ) {
const vec4 bit_shift = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );
float depth = dot( rgba_depth, bit_shift );
return depth;
}
#endif
#ifdef USE_SPECULARMAP
uniform sampler2D specularMap;
#endif
#ifdef USE_LOGDEPTHBUF
uniform float logDepthBufFC;
#ifdef USE_LOGDEPTHBUF_EXT
#extension GL_EXT_frag_depth : enable
varying float vFragDepth;
#endif
#endif
void main() {
gl_FragColor = vec4( diffuse, opacity );
#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)
gl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;
#endif
#ifdef USE_MAP
vec4 texelColor = texture2D( map, vUv );
#ifdef GAMMA_INPUT
texelColor.xyz *= texelColor.xyz;
#endif
gl_FragColor = gl_FragColor * texelColor;
#endif
#ifdef USE_ALPHAMAP
gl_FragColor.a *= texture2D( alphaMap, vUv ).g;
#endif
#ifdef ALPHATEST
if ( gl_FragColor.a < ALPHATEST ) discard;
#endif
float specularStrength;
#ifdef USE_SPECULARMAP
vec4 texelSpecular = texture2D( specularMap, vUv );
specularStrength = texelSpecular.r;
#else
specularStrength = 1.0;
#endif
#ifdef USE_LIGHTMAP
gl_FragColor = gl_FragColor * texture2D( lightMap, vUv2 );
#endif
#ifdef USE_COLOR
gl_FragColor = gl_FragColor * vec4( vColor, 1.0 );
#endif
#ifdef USE_ENVMAP
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )
vec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );
// http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transforma... // Transforming Normal Vectors with the Inverse Transformation
vec3 worldNormal = normalize( vec3( vec4( normal, 0.0 ) * viewMatrix ) );
#ifdef ENVMAP_MODE_REFLECTION
vec3 reflectVec = reflect( cameraToVertex, worldNormal );
#else
vec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );
#endif
#else
vec3 reflectVec = vReflect;
#endif
#ifdef DOUBLE_SIDED
float flipNormal = ( -1.0 + 2.0 * float( gl_FrontFacing ) );
#else
float flipNormal = 1.0;
#endif
#ifdef ENVMAP_TYPE_CUBE
vec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );
#elif defined( ENVMAP_TYPE_EQUIREC )
vec2 sampleUV;
sampleUV.y = clamp( flipNormal * reflectVec.y * 0.5 + 0.5, 0.0, 1.0);
sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * 0.15915494309189533576888376337251 + 0.5; // reciprocal( 2 PI ) + 0.5
vec4 envColor = texture2D( envMap, sampleUV );
#elif defined( ENVMAP_TYPE_SPHERE )
vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));
vec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );
#endif
#ifdef GAMMA_INPUT
envColor.xyz *= envColor.xyz;
#endif
#ifdef ENVMAP_BLENDING_MULTIPLY
gl_FragColor.xyz = mix( gl_FragColor.xyz, gl_FragColor.xyz * envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_MIX )
gl_FragColor.xyz = mix( gl_FragColor.xyz, envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_ADD )
gl_FragColor.xyz += envColor.xyz * specularStrength * reflectivity;
#endif
#endif
#ifdef USE_SHADOWMAP
#ifdef SHADOWMAP_DEBUG
vec3 frustumColors[3];
frustumColors[0] = vec3( 1.0, 0.5, 0.0 );
frustumColors[1] = vec3( 0.0, 1.0, 0.8 );
frustumColors[2] = vec3( 0.0, 0.5, 1.0 );
#endif
#ifdef SHADOWMAP_CASCADE
int inFrustumCount = 0;
#endif
float fDepth;
vec3 shadowColor = vec3( 1.0 );
for( int i = 0; i < MAX_SHADOWS; i ++ ) {
vec3 shadowCoord = vShadowCoord[ i ].xyz / vShadowCoord[ i ].w;
// if ( something && something ) breaks ATI OpenGL shader compiler
// if ( all( something, something ) ) using this instead
bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );
bool inFrustum = all( inFrustumVec );
// don't shadow pixels outside of light frustum
// use just first frustum (for cascades)
// don't shadow pixels behind far plane of light frustum
#ifdef SHADOWMAP_CASCADE
inFrustumCount += int( inFrustum );
bvec3 frustumTestVec = bvec3( inFrustum, inFrustumCount == 1, shadowCoord.z <= 1.0 );
#else
bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );
#endif
bool frustumTest = all( frustumTestVec );
if ( frustumTest ) {
shadowCoord.z += shadowBias[ i ];
#if defined( SHADOWMAP_TYPE_PCF )
// Percentage-close filtering
// (9 pixel kernel)
// http://fabiensanglard.net/shadowmappingPCF/
float shadow = 0.0;
/*
// nested loops breaks shader compiler / validator on some ATI cards when using OpenGL
// must enroll loop manually
for ( float y = -1.25; y <= 1.25; y += 1.25 )
for ( float x = -1.25; x <= 1.25; x += 1.25 ) {
vec4 rgbaDepth = texture2D( shadowMap[ i ], vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy );
// doesn't seem to produce any noticeable visual difference compared to simple texture2D lookup
//vec4 rgbaDepth = texture2DProj( shadowMap[ i ], vec4( vShadowCoord[ i ].w * ( vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy ), 0.05, vShadowCoord[ i ].w ) );
float fDepth = unpackDepth( rgbaDepth );
if ( fDepth < shadowCoord.z )
shadow += 1.0;
}
shadow /= 9.0;
*/
const float shadowDelta = 1.0 / 9.0;
float xPixelOffset = 1.0 / shadowMapSize[ i ].x;
float yPixelOffset = 1.0 / shadowMapSize[ i ].y;
float dx0 = -1.25 * xPixelOffset;
float dy0 = -1.25 * yPixelOffset;
float dx1 = 1.25 * xPixelOffset;
float dy1 = 1.25 * yPixelOffset;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );
#elif defined( SHADOWMAP_TYPE_PCF_SOFT )
// Percentage-close filtering
// (9 pixel kernel)
// http://fabiensanglard.net/shadowmappingPCF/
float shadow = 0.0;
float xPixelOffset = 1.0 / shadowMapSize[ i ].x;
float yPixelOffset = 1.0 / shadowMapSize[ i ].y;
float dx0 = -1.0 * xPixelOffset;
float dy0 = -1.0 * yPixelOffset;
float dx1 = 1.0 * xPixelOffset;
float dy1 = 1.0 * yPixelOffset;
mat3 shadowKernel;
mat3 depthKernel;
depthKernel[0][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );
depthKernel[0][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );
depthKernel[0][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );
depthKernel[1][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );
depthKernel[1][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );
depthKernel[1][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );
depthKernel[2][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );
depthKernel[2][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );
depthKernel[2][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );
vec3 shadowZ = vec3( shadowCoord.z );
shadowKernel[0] = vec3(lessThan(depthKernel[0], shadowZ ));
shadowKernel[0] *= vec3(0.25);
shadowKernel[1] = vec3(lessThan(depthKernel[1], shadowZ ));
shadowKernel[1] *= vec3(0.25);
shadowKernel[2] = vec3(lessThan(depthKernel[2], shadowZ ));
shadowKernel[2] *= vec3(0.25);
vec2 fractionalCoord = 1.0 - fract( shadowCoord.xy * shadowMapSize[i].xy );
shadowKernel[0] = mix( shadowKernel[1], shadowKernel[0], fractionalCoord.x );
shadowKernel[1] = mix( shadowKernel[2], shadowKernel[1], fractionalCoord.x );
vec4 shadowValues;
shadowValues.x = mix( shadowKernel[0][1], shadowKernel[0][0], fractionalCoord.y );
shadowValues.y = mix( shadowKernel[0][2], shadowKernel[0][1], fractionalCoord.y );
shadowValues.z = mix( shadowKernel[1][1], shadowKernel[1][0], fractionalCoord.y );
shadowValues.w = mix( shadowKernel[1][2], shadowKernel[1][1], fractionalCoord.y );
shadow = dot( shadowValues, vec4( 1.0 ) );
shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );
#else
vec4 rgbaDepth = texture2D( shadowMap[ i ], shadowCoord.xy );
float fDepth = unpackDepth( rgbaDepth );
if ( fDepth < shadowCoord.z )
// spot with multiple shadows is darker
shadowColor = shadowColor * vec3( 1.0 - shadowDarkness[ i ] );
// spot with multiple shadows has the same color as single shadow spot
// shadowColor = min( shadowColor, vec3( shadowDarkness[ i ] ) );
#endif
}
#ifdef SHADOWMAP_DEBUG
#ifdef SHADOWMAP_CASCADE
if ( inFrustum && inFrustumCount == 1 ) gl_FragColor.xyz *= frustumColors[ i ];
#else
if ( inFrustum ) gl_FragColor.xyz *= frustumColors[ i ];
#endif
#endif
}
#ifdef GAMMA_OUTPUT
shadowColor *= shadowColor;
#endif
gl_FragColor.xyz = gl_FragColor.xyz * shadowColor;
#endif
#ifdef GAMMA_OUTPUT
gl_FragColor.xyz = sqrt( gl_FragColor.xyz );
#endif
#ifdef USE_FOG
#ifdef USE_LOGDEPTHBUF_EXT
float depth = gl_FragDepthEXT / gl_FragCoord.w;
#else
float depth = gl_FragCoord.z / gl_FragCoord.w;
#endif
#ifdef FOG_EXP2
const float LOG2 = 1.442695;
float fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );
fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );
#else
float fogFactor = smoothstep( fogNear, fogFar, depth );
#endif
gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );
#endif
}
MeshLambertMaterial
Vertex Shader
#define LAMBERT
varying vec3 vLightFront;
#ifdef DOUBLE_SIDED
varying vec3 vLightBack;
#endif
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )
varying vec2 vUv;
uniform vec4 offsetRepeat;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vUv2;
#endif
#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG )
varying vec3 vReflect;
uniform float refractionRatio;
#endif
uniform vec3 ambient;
uniform vec3 diffuse;
uniform vec3 emissive;
uniform vec3 ambientLightColor;
#if MAX_DIR_LIGHTS > 0
uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];
uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];
#endif
#if MAX_HEMI_LIGHTS > 0
uniform vec3 hemisphereLightSkyColor[ MAX_HEMI_LIGHTS ];
uniform vec3 hemisphereLightGroundColor[ MAX_HEMI_LIGHTS ];
uniform vec3 hemisphereLightDirection[ MAX_HEMI_LIGHTS ];
#endif
#if MAX_POINT_LIGHTS > 0
uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];
uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];
uniform float pointLightDistance[ MAX_POINT_LIGHTS ];
#endif
#if MAX_SPOT_LIGHTS > 0
uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];
uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];
uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];
uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];
uniform float spotLightAngleCos[ MAX_SPOT_LIGHTS ];
uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];
#endif
#ifdef WRAP_AROUND
uniform vec3 wrapRGB;
#endif
#ifdef USE_COLOR
varying vec3 vColor;
#endif
#ifdef USE_MORPHTARGETS
#ifndef USE_MORPHNORMALS
uniform float morphTargetInfluences[ 8 ];
#else
uniform float morphTargetInfluences[ 4 ];
#endif
#endif
#ifdef USE_SKINNING
uniform mat4 bindMatrix;
uniform mat4 bindMatrixInverse;
#ifdef BONE_TEXTURE
uniform sampler2D boneTexture;
uniform int boneTextureWidth;
uniform int boneTextureHeight;
mat4 getBoneMatrix( const in float i ) {
float j = i * 4.0;
float x = mod( j, float( boneTextureWidth ) );
float y = floor( j / float( boneTextureWidth ) );
float dx = 1.0 / float( boneTextureWidth );
float dy = 1.0 / float( boneTextureHeight );
y = dy * ( y + 0.5 );
vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );
vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );
vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );
vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );
mat4 bone = mat4( v1, v2, v3, v4 );
return bone;
}
#else
uniform mat4 boneGlobalMatrices[ MAX_BONES ];
mat4 getBoneMatrix( const in float i ) {
mat4 bone = boneGlobalMatrices[ int(i) ];
return bone;
}
#endif
#endif
#ifdef USE_SHADOWMAP
varying vec4 vShadowCoord[ MAX_SHADOWS ];
uniform mat4 shadowMatrix[ MAX_SHADOWS ];
#endif
#ifdef USE_LOGDEPTHBUF
#ifdef USE_LOGDEPTHBUF_EXT
varying float vFragDepth;
#endif
uniform float logDepthBufFC;
#endif
void main() {
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )
vUv = uv * offsetRepeat.zw + offsetRepeat.xy;
#endif
#ifdef USE_LIGHTMAP
vUv2 = uv2;
#endif
#ifdef USE_COLOR
#ifdef GAMMA_INPUT
vColor = color * color;
#else
vColor = color;
#endif
#endif
#ifdef USE_MORPHNORMALS
vec3 morphedNormal = vec3( 0.0 );
morphedNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];
morphedNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];
morphedNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];
morphedNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];
morphedNormal += normal;
#endif
#ifdef USE_SKINNING
mat4 boneMatX = getBoneMatrix( skinIndex.x );
mat4 boneMatY = getBoneMatrix( skinIndex.y );
mat4 boneMatZ = getBoneMatrix( skinIndex.z );
mat4 boneMatW = getBoneMatrix( skinIndex.w );
#endif
#ifdef USE_SKINNING
mat4 skinMatrix = mat4( 0.0 );
skinMatrix += skinWeight.x * boneMatX;
skinMatrix += skinWeight.y * boneMatY;
skinMatrix += skinWeight.z * boneMatZ;
skinMatrix += skinWeight.w * boneMatW;
skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;
#ifdef USE_MORPHNORMALS
vec4 skinnedNormal = skinMatrix * vec4( morphedNormal, 0.0 );
#else
vec4 skinnedNormal = skinMatrix * vec4( normal, 0.0 );
#endif
#endif
#ifdef USE_SKINNING
vec3 objectNormal = skinnedNormal.xyz;
#elif defined( USE_MORPHNORMALS )
vec3 objectNormal = morphedNormal;
#else
vec3 objectNormal = normal;
#endif
#ifdef FLIP_SIDED
objectNormal = -objectNormal;
#endif
vec3 transformedNormal = normalMatrix * objectNormal;
#ifdef USE_MORPHTARGETS
vec3 morphed = vec3( 0.0 );
morphed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];
morphed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];
morphed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];
morphed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];
#ifndef USE_MORPHNORMALS
morphed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];
morphed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];
morphed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];
morphed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];
#endif
morphed += position;
#endif
#ifdef USE_SKINNING
#ifdef USE_MORPHTARGETS
vec4 skinVertex = bindMatrix * vec4( morphed, 1.0 );
#else
vec4 skinVertex = bindMatrix * vec4( position, 1.0 );
#endif
vec4 skinned = vec4( 0.0 );
skinned += boneMatX * skinVertex * skinWeight.x;
skinned += boneMatY * skinVertex * skinWeight.y;
skinned += boneMatZ * skinVertex * skinWeight.z;
skinned += boneMatW * skinVertex * skinWeight.w;
skinned = bindMatrixInverse * skinned;
#endif
#ifdef USE_SKINNING
vec4 mvPosition = modelViewMatrix * skinned;
#elif defined( USE_MORPHTARGETS )
vec4 mvPosition = modelViewMatrix * vec4( morphed, 1.0 );
#else
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
#endif
gl_Position = projectionMatrix * mvPosition;
#ifdef USE_LOGDEPTHBUF
gl_Position.z = log2(max(1e-6, gl_Position.w + 1.0)) * logDepthBufFC;
#ifdef USE_LOGDEPTHBUF_EXT
vFragDepth = 1.0 + gl_Position.w;
#else
gl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;
#endif
#endif
#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )
#ifdef USE_SKINNING
vec4 worldPosition = modelMatrix * skinned;
#elif defined( USE_MORPHTARGETS )
vec4 worldPosition = modelMatrix * vec4( morphed, 1.0 );
#else
vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
#endif
#endif
#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG )
vec3 worldNormal = mat3( modelMatrix[ 0 ].xyz, modelMatrix[ 1 ].xyz, modelMatrix[ 2 ].xyz ) * objectNormal;
worldNormal = normalize( worldNormal );
vec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );
#ifdef ENVMAP_MODE_REFLECTION
vReflect = reflect( cameraToVertex, worldNormal );
#else
vReflect = refract( cameraToVertex, worldNormal, refractionRatio );
#endif
#endif
vLightFront = vec3( 0.0 );
#ifdef DOUBLE_SIDED
vLightBack = vec3( 0.0 );
#endif
transformedNormal = normalize( transformedNormal );
#if MAX_DIR_LIGHTS > 0
for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {
vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );
vec3 dirVector = normalize( lDirection.xyz );
float dotProduct = dot( transformedNormal, dirVector );
vec3 directionalLightWeighting = vec3( max( dotProduct, 0.0 ) );
#ifdef DOUBLE_SIDED
vec3 directionalLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );
#ifdef WRAP_AROUND
vec3 directionalLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );
#endif
#endif
#ifdef WRAP_AROUND
vec3 directionalLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );
directionalLightWeighting = mix( directionalLightWeighting, directionalLightWeightingHalf, wrapRGB );
#ifdef DOUBLE_SIDED
directionalLightWeightingBack = mix( directionalLightWeightingBack, directionalLightWeightingHalfBack, wrapRGB );
#endif
#endif
vLightFront += directionalLightColor[ i ] * directionalLightWeighting;
#ifdef DOUBLE_SIDED
vLightBack += directionalLightColor[ i ] * directionalLightWeightingBack;
#endif
}
#endif
#if MAX_POINT_LIGHTS > 0
for( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {
vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );
vec3 lVector = lPosition.xyz - mvPosition.xyz;
float lDistance = 1.0;
if ( pointLightDistance[ i ] > 0.0 )
lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );
lVector = normalize( lVector );
float dotProduct = dot( transformedNormal, lVector );
vec3 pointLightWeighting = vec3( max( dotProduct, 0.0 ) );
#ifdef DOUBLE_SIDED
vec3 pointLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );
#ifdef WRAP_AROUND
vec3 pointLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );
#endif
#endif
#ifdef WRAP_AROUND
vec3 pointLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );
pointLightWeighting = mix( pointLightWeighting, pointLightWeightingHalf, wrapRGB );
#ifdef DOUBLE_SIDED
pointLightWeightingBack = mix( pointLightWeightingBack, pointLightWeightingHalfBack, wrapRGB );
#endif
#endif
vLightFront += pointLightColor[ i ] * pointLightWeighting * lDistance;
#ifdef DOUBLE_SIDED
vLightBack += pointLightColor[ i ] * pointLightWeightingBack * lDistance;
#endif
}
#endif
#if MAX_SPOT_LIGHTS > 0
for( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {
vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );
vec3 lVector = lPosition.xyz - mvPosition.xyz;
float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - worldPosition.xyz ) );
if ( spotEffect > spotLightAngleCos[ i ] ) {
spotEffect = max( pow( max( spotEffect, 0.0 ), spotLightExponent[ i ] ), 0.0 );
float lDistance = 1.0;
if ( spotLightDistance[ i ] > 0.0 )
lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );
lVector = normalize( lVector );
float dotProduct = dot( transformedNormal, lVector );
vec3 spotLightWeighting = vec3( max( dotProduct, 0.0 ) );
#ifdef DOUBLE_SIDED
vec3 spotLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );
#ifdef WRAP_AROUND
vec3 spotLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );
#endif
#endif
#ifdef WRAP_AROUND
vec3 spotLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );
spotLightWeighting = mix( spotLightWeighting, spotLightWeightingHalf, wrapRGB );
#ifdef DOUBLE_SIDED
spotLightWeightingBack = mix( spotLightWeightingBack, spotLightWeightingHalfBack, wrapRGB );
#endif
#endif
vLightFront += spotLightColor[ i ] * spotLightWeighting * lDistance * spotEffect;
#ifdef DOUBLE_SIDED
vLightBack += spotLightColor[ i ] * spotLightWeightingBack * lDistance * spotEffect;
#endif
}
}
#endif
#if MAX_HEMI_LIGHTS > 0
for( int i = 0; i < MAX_HEMI_LIGHTS; i ++ ) {
vec4 lDirection = viewMatrix * vec4( hemisphereLightDirection[ i ], 0.0 );
vec3 lVector = normalize( lDirection.xyz );
float dotProduct = dot( transformedNormal, lVector );
float hemiDiffuseWeight = 0.5 * dotProduct + 0.5;
float hemiDiffuseWeightBack = -0.5 * dotProduct + 0.5;
vLightFront += mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );
#ifdef DOUBLE_SIDED
vLightBack += mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeightBack );
#endif
}
#endif
vLightFront = vLightFront * diffuse + ambient * ambientLightColor + emissive;
#ifdef DOUBLE_SIDED
vLightBack = vLightBack * diffuse + ambient * ambientLightColor + emissive;
#endif
#ifdef USE_SHADOWMAP
for( int i = 0; i < MAX_SHADOWS; i ++ ) {
vShadowCoord[ i ] = shadowMatrix[ i ] * worldPosition;
}
#endif
}
Fragment Shader
uniform float opacity;
varying vec3 vLightFront;
#ifdef DOUBLE_SIDED
varying vec3 vLightBack;
#endif
#ifdef USE_COLOR
varying vec3 vColor;
#endif
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )
varying vec2 vUv;
#endif
#ifdef USE_MAP
uniform sampler2D map;
#endif
#ifdef USE_ALPHAMAP
uniform sampler2D alphaMap;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vUv2;
uniform sampler2D lightMap;
#endif
#ifdef USE_ENVMAP
uniform float reflectivity;
#ifdef ENVMAP_TYPE_CUBE
uniform samplerCube envMap;
#else
uniform sampler2D envMap;
#endif
uniform float flipEnvMap;
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )
uniform float refractionRatio;
#else
varying vec3 vReflect;
#endif
#endif
#ifdef USE_FOG
uniform vec3 fogColor;
#ifdef FOG_EXP2
uniform float fogDensity;
#else
uniform float fogNear;
uniform float fogFar;
#endif
#endif
#ifdef USE_SHADOWMAP
uniform sampler2D shadowMap[ MAX_SHADOWS ];
uniform vec2 shadowMapSize[ MAX_SHADOWS ];
uniform float shadowDarkness[ MAX_SHADOWS ];
uniform float shadowBias[ MAX_SHADOWS ];
varying vec4 vShadowCoord[ MAX_SHADOWS ];
float unpackDepth( const in vec4 rgba_depth ) {
const vec4 bit_shift = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );
float depth = dot( rgba_depth, bit_shift );
return depth;
}
#endif
#ifdef USE_SPECULARMAP
uniform sampler2D specularMap;
#endif
#ifdef USE_LOGDEPTHBUF
uniform float logDepthBufFC;
#ifdef USE_LOGDEPTHBUF_EXT
#extension GL_EXT_frag_depth : enable
varying float vFragDepth;
#endif
#endif
void main() {
gl_FragColor = vec4( vec3( 1.0 ), opacity );
#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)
gl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;
#endif
#ifdef USE_MAP
vec4 texelColor = texture2D( map, vUv );
#ifdef GAMMA_INPUT
texelColor.xyz *= texelColor.xyz;
#endif
gl_FragColor = gl_FragColor * texelColor;
#endif
#ifdef USE_ALPHAMAP
gl_FragColor.a *= texture2D( alphaMap, vUv ).g;
#endif
#ifdef ALPHATEST
if ( gl_FragColor.a < ALPHATEST ) discard;
#endif
float specularStrength;
#ifdef USE_SPECULARMAP
vec4 texelSpecular = texture2D( specularMap, vUv );
specularStrength = texelSpecular.r;
#else
specularStrength = 1.0;
#endif
#ifdef DOUBLE_SIDED
if ( gl_FrontFacing )
gl_FragColor.xyz *= vLightFront;
else
gl_FragColor.xyz *= vLightBack;
#else
gl_FragColor.xyz *= vLightFront;
#endif
#ifdef USE_LIGHTMAP
gl_FragColor = gl_FragColor * texture2D( lightMap, vUv2 );
#endif
#ifdef USE_COLOR
gl_FragColor = gl_FragColor * vec4( vColor, 1.0 );
#endif
#ifdef USE_ENVMAP
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )
vec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );
// http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transforma... // Transforming Normal Vectors with the Inverse Transformation
vec3 worldNormal = normalize( vec3( vec4( normal, 0.0 ) * viewMatrix ) );
#ifdef ENVMAP_MODE_REFLECTION
vec3 reflectVec = reflect( cameraToVertex, worldNormal );
#else
vec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );
#endif
#else
vec3 reflectVec = vReflect;
#endif
#ifdef DOUBLE_SIDED
float flipNormal = ( -1.0 + 2.0 * float( gl_FrontFacing ) );
#else
float flipNormal = 1.0;
#endif
#ifdef ENVMAP_TYPE_CUBE
vec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );
#elif defined( ENVMAP_TYPE_EQUIREC )
vec2 sampleUV;
sampleUV.y = clamp( flipNormal * reflectVec.y * 0.5 + 0.5, 0.0, 1.0);
sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * 0.15915494309189533576888376337251 + 0.5; // reciprocal( 2 PI ) + 0.5
vec4 envColor = texture2D( envMap, sampleUV );
#elif defined( ENVMAP_TYPE_SPHERE )
vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));
vec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );
#endif
#ifdef GAMMA_INPUT
envColor.xyz *= envColor.xyz;
#endif
#ifdef ENVMAP_BLENDING_MULTIPLY
gl_FragColor.xyz = mix( gl_FragColor.xyz, gl_FragColor.xyz * envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_MIX )
gl_FragColor.xyz = mix( gl_FragColor.xyz, envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_ADD )
gl_FragColor.xyz += envColor.xyz * specularStrength * reflectivity;
#endif
#endif
#ifdef USE_SHADOWMAP
#ifdef SHADOWMAP_DEBUG
vec3 frustumColors[3];
frustumColors[0] = vec3( 1.0, 0.5, 0.0 );
frustumColors[1] = vec3( 0.0, 1.0, 0.8 );
frustumColors[2] = vec3( 0.0, 0.5, 1.0 );
#endif
#ifdef SHADOWMAP_CASCADE
int inFrustumCount = 0;
#endif
float fDepth;
vec3 shadowColor = vec3( 1.0 );
for( int i = 0; i < MAX_SHADOWS; i ++ ) {
vec3 shadowCoord = vShadowCoord[ i ].xyz / vShadowCoord[ i ].w;
// if ( something && something ) breaks ATI OpenGL shader compiler
// if ( all( something, something ) ) using this instead
bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );
bool inFrustum = all( inFrustumVec );
// don't shadow pixels outside of light frustum
// use just first frustum (for cascades)
// don't shadow pixels behind far plane of light frustum
#ifdef SHADOWMAP_CASCADE
inFrustumCount += int( inFrustum );
bvec3 frustumTestVec = bvec3( inFrustum, inFrustumCount == 1, shadowCoord.z <= 1.0 );
#else
bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );
#endif
bool frustumTest = all( frustumTestVec );
if ( frustumTest ) {
shadowCoord.z += shadowBias[ i ];
#if defined( SHADOWMAP_TYPE_PCF )
// Percentage-close filtering
// (9 pixel kernel)
// http://fabiensanglard.net/shadowmappingPCF/
float shadow = 0.0;
/*
// nested loops breaks shader compiler / validator on some ATI cards when using OpenGL
// must enroll loop manually
for ( float y = -1.25; y <= 1.25; y += 1.25 )
for ( float x = -1.25; x <= 1.25; x += 1.25 ) {
vec4 rgbaDepth = texture2D( shadowMap[ i ], vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy );
// doesn't seem to produce any noticeable visual difference compared to simple texture2D lookup
//vec4 rgbaDepth = texture2DProj( shadowMap[ i ], vec4( vShadowCoord[ i ].w * ( vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy ), 0.05, vShadowCoord[ i ].w ) );
float fDepth = unpackDepth( rgbaDepth );
if ( fDepth < shadowCoord.z )
shadow += 1.0;
}
shadow /= 9.0;
*/
const float shadowDelta = 1.0 / 9.0;
float xPixelOffset = 1.0 / shadowMapSize[ i ].x;
float yPixelOffset = 1.0 / shadowMapSize[ i ].y;
float dx0 = -1.25 * xPixelOffset;
float dy0 = -1.25 * yPixelOffset;
float dx1 = 1.25 * xPixelOffset;
float dy1 = 1.25 * yPixelOffset;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );
#elif defined( SHADOWMAP_TYPE_PCF_SOFT )
// Percentage-close filtering
// (9 pixel kernel)
// http://fabiensanglard.net/shadowmappingPCF/
float shadow = 0.0;
float xPixelOffset = 1.0 / shadowMapSize[ i ].x;
float yPixelOffset = 1.0 / shadowMapSize[ i ].y;
float dx0 = -1.0 * xPixelOffset;
float dy0 = -1.0 * yPixelOffset;
float dx1 = 1.0 * xPixelOffset;
float dy1 = 1.0 * yPixelOffset;
mat3 shadowKernel;
mat3 depthKernel;
depthKernel[0][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );
depthKernel[0][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );
depthKernel[0][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );
depthKernel[1][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );
depthKernel[1][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );
depthKernel[1][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );
depthKernel[2][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );
depthKernel[2][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );
depthKernel[2][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );
vec3 shadowZ = vec3( shadowCoord.z );
shadowKernel[0] = vec3(lessThan(depthKernel[0], shadowZ ));
shadowKernel[0] *= vec3(0.25);
shadowKernel[1] = vec3(lessThan(depthKernel[1], shadowZ ));
shadowKernel[1] *= vec3(0.25);
shadowKernel[2] = vec3(lessThan(depthKernel[2], shadowZ ));
shadowKernel[2] *= vec3(0.25);
vec2 fractionalCoord = 1.0 - fract( shadowCoord.xy * shadowMapSize[i].xy );
shadowKernel[0] = mix( shadowKernel[1], shadowKernel[0], fractionalCoord.x );
shadowKernel[1] = mix( shadowKernel[2], shadowKernel[1], fractionalCoord.x );
vec4 shadowValues;
shadowValues.x = mix( shadowKernel[0][1], shadowKernel[0][0], fractionalCoord.y );
shadowValues.y = mix( shadowKernel[0][2], shadowKernel[0][1], fractionalCoord.y );
shadowValues.z = mix( shadowKernel[1][1], shadowKernel[1][0], fractionalCoord.y );
shadowValues.w = mix( shadowKernel[1][2], shadowKernel[1][1], fractionalCoord.y );
shadow = dot( shadowValues, vec4( 1.0 ) );
shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );
#else
vec4 rgbaDepth = texture2D( shadowMap[ i ], shadowCoord.xy );
float fDepth = unpackDepth( rgbaDepth );
if ( fDepth < shadowCoord.z )
// spot with multiple shadows is darker
shadowColor = shadowColor * vec3( 1.0 - shadowDarkness[ i ] );
// spot with multiple shadows has the same color as single shadow spot
// shadowColor = min( shadowColor, vec3( shadowDarkness[ i ] ) );
#endif
}
#ifdef SHADOWMAP_DEBUG
#ifdef SHADOWMAP_CASCADE
if ( inFrustum && inFrustumCount == 1 ) gl_FragColor.xyz *= frustumColors[ i ];
#else
if ( inFrustum ) gl_FragColor.xyz *= frustumColors[ i ];
#endif
#endif
}
#ifdef GAMMA_OUTPUT
shadowColor *= shadowColor;
#endif
gl_FragColor.xyz = gl_FragColor.xyz * shadowColor;
#endif
#ifdef GAMMA_OUTPUT
gl_FragColor.xyz = sqrt( gl_FragColor.xyz );
#endif
#ifdef USE_FOG
#ifdef USE_LOGDEPTHBUF_EXT
float depth = gl_FragDepthEXT / gl_FragCoord.w;
#else
float depth = gl_FragCoord.z / gl_FragCoord.w;
#endif
#ifdef FOG_EXP2
const float LOG2 = 1.442695;
float fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );
fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );
#else
float fogFactor = smoothstep( fogNear, fogFar, depth );
#endif
gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );
#endif
}
MeshPhongMaterial
Vertex Shader
#define PHONG
varying vec3 vViewPosition;
varying vec3 vNormal;
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )
varying vec2 vUv;
uniform vec4 offsetRepeat;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vUv2;
#endif
#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG )
varying vec3 vReflect;
uniform float refractionRatio;
#endif
#if MAX_SPOT_LIGHTS > 0 || defined( USE_BUMPMAP ) || defined( USE_ENVMAP )
varying vec3 vWorldPosition;
#endif
#ifdef USE_COLOR
varying vec3 vColor;
#endif
#ifdef USE_MORPHTARGETS
#ifndef USE_MORPHNORMALS
uniform float morphTargetInfluences[ 8 ];
#else
uniform float morphTargetInfluences[ 4 ];
#endif
#endif
#ifdef USE_SKINNING
uniform mat4 bindMatrix;
uniform mat4 bindMatrixInverse;
#ifdef BONE_TEXTURE
uniform sampler2D boneTexture;
uniform int boneTextureWidth;
uniform int boneTextureHeight;
mat4 getBoneMatrix( const in float i ) {
float j = i * 4.0;
float x = mod( j, float( boneTextureWidth ) );
float y = floor( j / float( boneTextureWidth ) );
float dx = 1.0 / float( boneTextureWidth );
float dy = 1.0 / float( boneTextureHeight );
y = dy * ( y + 0.5 );
vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );
vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );
vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );
vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );
mat4 bone = mat4( v1, v2, v3, v4 );
return bone;
}
#else
uniform mat4 boneGlobalMatrices[ MAX_BONES ];
mat4 getBoneMatrix( const in float i ) {
mat4 bone = boneGlobalMatrices[ int(i) ];
return bone;
}
#endif
#endif
#ifdef USE_SHADOWMAP
varying vec4 vShadowCoord[ MAX_SHADOWS ];
uniform mat4 shadowMatrix[ MAX_SHADOWS ];
#endif
#ifdef USE_LOGDEPTHBUF
#ifdef USE_LOGDEPTHBUF_EXT
varying float vFragDepth;
#endif
uniform float logDepthBufFC;
#endif
void main() {
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )
vUv = uv * offsetRepeat.zw + offsetRepeat.xy;
#endif
#ifdef USE_LIGHTMAP
vUv2 = uv2;
#endif
#ifdef USE_COLOR
#ifdef GAMMA_INPUT
vColor = color * color;
#else
vColor = color;
#endif
#endif
#ifdef USE_MORPHNORMALS
vec3 morphedNormal = vec3( 0.0 );
morphedNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];
morphedNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];
morphedNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];
morphedNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];
morphedNormal += normal;
#endif
#ifdef USE_SKINNING
mat4 boneMatX = getBoneMatrix( skinIndex.x );
mat4 boneMatY = getBoneMatrix( skinIndex.y );
mat4 boneMatZ = getBoneMatrix( skinIndex.z );
mat4 boneMatW = getBoneMatrix( skinIndex.w );
#endif
#ifdef USE_SKINNING
mat4 skinMatrix = mat4( 0.0 );
skinMatrix += skinWeight.x * boneMatX;
skinMatrix += skinWeight.y * boneMatY;
skinMatrix += skinWeight.z * boneMatZ;
skinMatrix += skinWeight.w * boneMatW;
skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;
#ifdef USE_MORPHNORMALS
vec4 skinnedNormal = skinMatrix * vec4( morphedNormal, 0.0 );
#else
vec4 skinnedNormal = skinMatrix * vec4( normal, 0.0 );
#endif
#endif
#ifdef USE_SKINNING
vec3 objectNormal = skinnedNormal.xyz;
#elif defined( USE_MORPHNORMALS )
vec3 objectNormal = morphedNormal;
#else
vec3 objectNormal = normal;
#endif
#ifdef FLIP_SIDED
objectNormal = -objectNormal;
#endif
vec3 transformedNormal = normalMatrix * objectNormal;
vNormal = normalize( transformedNormal );
#ifdef USE_MORPHTARGETS
vec3 morphed = vec3( 0.0 );
morphed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];
morphed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];
morphed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];
morphed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];
#ifndef USE_MORPHNORMALS
morphed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];
morphed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];
morphed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];
morphed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];
#endif
morphed += position;
#endif
#ifdef USE_SKINNING
#ifdef USE_MORPHTARGETS
vec4 skinVertex = bindMatrix * vec4( morphed, 1.0 );
#else
vec4 skinVertex = bindMatrix * vec4( position, 1.0 );
#endif
vec4 skinned = vec4( 0.0 );
skinned += boneMatX * skinVertex * skinWeight.x;
skinned += boneMatY * skinVertex * skinWeight.y;
skinned += boneMatZ * skinVertex * skinWeight.z;
skinned += boneMatW * skinVertex * skinWeight.w;
skinned = bindMatrixInverse * skinned;
#endif
#ifdef USE_SKINNING
vec4 mvPosition = modelViewMatrix * skinned;
#elif defined( USE_MORPHTARGETS )
vec4 mvPosition = modelViewMatrix * vec4( morphed, 1.0 );
#else
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
#endif
gl_Position = projectionMatrix * mvPosition;
#ifdef USE_LOGDEPTHBUF
gl_Position.z = log2(max(1e-6, gl_Position.w + 1.0)) * logDepthBufFC;
#ifdef USE_LOGDEPTHBUF_EXT
vFragDepth = 1.0 + gl_Position.w;
#else
gl_Position.z = (gl_Position.z - 1.0) * gl_Position.w;
#endif
#endif
vViewPosition = -mvPosition.xyz;
#if defined( USE_ENVMAP ) || defined( PHONG ) || defined( LAMBERT ) || defined ( USE_SHADOWMAP )
#ifdef USE_SKINNING
vec4 worldPosition = modelMatrix * skinned;
#elif defined( USE_MORPHTARGETS )
vec4 worldPosition = modelMatrix * vec4( morphed, 1.0 );
#else
vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
#endif
#endif
#if defined( USE_ENVMAP ) && ! defined( USE_BUMPMAP ) && ! defined( USE_NORMALMAP ) && ! defined( PHONG )
vec3 worldNormal = mat3( modelMatrix[ 0 ].xyz, modelMatrix[ 1 ].xyz, modelMatrix[ 2 ].xyz ) * objectNormal;
worldNormal = normalize( worldNormal );
vec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );
#ifdef ENVMAP_MODE_REFLECTION
vReflect = reflect( cameraToVertex, worldNormal );
#else
vReflect = refract( cameraToVertex, worldNormal, refractionRatio );
#endif
#endif
#if MAX_SPOT_LIGHTS > 0 || defined( USE_BUMPMAP ) || defined( USE_ENVMAP )
vWorldPosition = worldPosition.xyz;
#endif
#ifdef USE_SHADOWMAP
for( int i = 0; i < MAX_SHADOWS; i ++ ) {
vShadowCoord[ i ] = shadowMatrix[ i ] * worldPosition;
}
#endif
}
Fragment Shader
#define PHONG
uniform vec3 diffuse;
uniform float opacity;
uniform vec3 ambient;
uniform vec3 emissive;
uniform vec3 specular;
uniform float shininess;
#ifdef USE_COLOR
varying vec3 vColor;
#endif
#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP )
varying vec2 vUv;
#endif
#ifdef USE_MAP
uniform sampler2D map;
#endif
#ifdef USE_ALPHAMAP
uniform sampler2D alphaMap;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vUv2;
uniform sampler2D lightMap;
#endif
#ifdef USE_ENVMAP
uniform float reflectivity;
#ifdef ENVMAP_TYPE_CUBE
uniform samplerCube envMap;
#else
uniform sampler2D envMap;
#endif
uniform float flipEnvMap;
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )
uniform float refractionRatio;
#else
varying vec3 vReflect;
#endif
#endif
#ifdef USE_FOG
uniform vec3 fogColor;
#ifdef FOG_EXP2
uniform float fogDensity;
#else
uniform float fogNear;
uniform float fogFar;
#endif
#endif
uniform vec3 ambientLightColor;
#if MAX_DIR_LIGHTS > 0
uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];
uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];
#endif
#if MAX_HEMI_LIGHTS > 0
uniform vec3 hemisphereLightSkyColor[ MAX_HEMI_LIGHTS ];
uniform vec3 hemisphereLightGroundColor[ MAX_HEMI_LIGHTS ];
uniform vec3 hemisphereLightDirection[ MAX_HEMI_LIGHTS ];
#endif
#if MAX_POINT_LIGHTS > 0
uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];
uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];
uniform float pointLightDistance[ MAX_POINT_LIGHTS ];
#endif
#if MAX_SPOT_LIGHTS > 0
uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];
uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];
uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];
uniform float spotLightAngleCos[ MAX_SPOT_LIGHTS ];
uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];
uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];
#endif
#if MAX_SPOT_LIGHTS > 0 || defined( USE_BUMPMAP ) || defined( USE_ENVMAP )
varying vec3 vWorldPosition;
#endif
#ifdef WRAP_AROUND
uniform vec3 wrapRGB;
#endif
varying vec3 vViewPosition;
varying vec3 vNormal;
#ifdef USE_SHADOWMAP
uniform sampler2D shadowMap[ MAX_SHADOWS ];
uniform vec2 shadowMapSize[ MAX_SHADOWS ];
uniform float shadowDarkness[ MAX_SHADOWS ];
uniform float shadowBias[ MAX_SHADOWS ];
varying vec4 vShadowCoord[ MAX_SHADOWS ];
float unpackDepth( const in vec4 rgba_depth ) {
const vec4 bit_shift = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );
float depth = dot( rgba_depth, bit_shift );
return depth;
}
#endif
#ifdef USE_BUMPMAP
uniform sampler2D bumpMap;
uniform float bumpScale;
// Derivative maps - bump mapping unparametrized surfaces by Morten Mikkelsen
// http://mmikkelsen3d.blogspot.sk/2011/07/derivative-maps.html
// Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2)
vec2 dHdxy_fwd() {
vec2 dSTdx = dFdx( vUv );
vec2 dSTdy = dFdy( vUv );
float Hll = bumpScale * texture2D( bumpMap, vUv ).x;
float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;
float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;
return vec2( dBx, dBy );
}
vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {
vec3 vSigmaX = dFdx( surf_pos );
vec3 vSigmaY = dFdy( surf_pos );
vec3 vN = surf_norm; // normalized
vec3 R1 = cross( vSigmaY, vN );
vec3 R2 = cross( vN, vSigmaX );
float fDet = dot( vSigmaX, R1 );
vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );
return normalize( abs( fDet ) * surf_norm - vGrad );
}
#endif
#ifdef USE_NORMALMAP
uniform sampler2D normalMap;
uniform vec2 normalScale;
// Per-Pixel Tangent Space Normal Mapping
// hacksoflife.blogspot.ch/2009/11/per-pixel-tangent-space-normal-mapping . html
vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {
vec3 q0 = dFdx( eye_pos.xyz );
vec3 q1 = dFdy( eye_pos.xyz );
vec2 st0 = dFdx( vUv.st );
vec2 st1 = dFdy( vUv.st );
vec3 S = normalize( q0 * st1.t - q1 * st0.t );
vec3 T = normalize( -q0 * st1.s + q1 * st0.s );
vec3 N = normalize( surf_norm );
vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;
mapN.xy = normalScale * mapN.xy;
mat3 tsn = mat3( S, T, N );
return normalize( tsn * mapN );
}
#endif
#ifdef USE_SPECULARMAP
uniform sampler2D specularMap;
#endif
#ifdef USE_LOGDEPTHBUF
uniform float logDepthBufFC;
#ifdef USE_LOGDEPTHBUF_EXT
#extension GL_EXT_frag_depth : enable
varying float vFragDepth;
#endif
#endif
void main() {
gl_FragColor = vec4( vec3( 1.0 ), opacity );
#if defined(USE_LOGDEPTHBUF) && defined(USE_LOGDEPTHBUF_EXT)
gl_FragDepthEXT = log2(vFragDepth) * logDepthBufFC * 0.5;
#endif
#ifdef USE_MAP
vec4 texelColor = texture2D( map, vUv );
#ifdef GAMMA_INPUT
texelColor.xyz *= texelColor.xyz;
#endif
gl_FragColor = gl_FragColor * texelColor;
#endif
#ifdef USE_ALPHAMAP
gl_FragColor.a *= texture2D( alphaMap, vUv ).g;
#endif
#ifdef ALPHATEST
if ( gl_FragColor.a < ALPHATEST ) discard;
#endif
float specularStrength;
#ifdef USE_SPECULARMAP
vec4 texelSpecular = texture2D( specularMap, vUv );
specularStrength = texelSpecular.r;
#else
specularStrength = 1.0;
#endif
vec3 normal = normalize( vNormal );
vec3 viewPosition = normalize( vViewPosition );
#ifdef DOUBLE_SIDED
normal = normal * ( -1.0 + 2.0 * float( gl_FrontFacing ) );
#endif
#ifdef USE_NORMALMAP
normal = perturbNormal2Arb( -vViewPosition, normal );
#elif defined( USE_BUMPMAP )
normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );
#endif
#if MAX_POINT_LIGHTS > 0
vec3 pointDiffuse = vec3( 0.0 );
vec3 pointSpecular = vec3( 0.0 );
for ( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {
vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );
vec3 lVector = lPosition.xyz + vViewPosition.xyz;
float lDistance = 1.0;
if ( pointLightDistance[ i ] > 0.0 )
lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );
lVector = normalize( lVector );
// diffuse
float dotProduct = dot( normal, lVector );
#ifdef WRAP_AROUND
float pointDiffuseWeightFull = max( dotProduct, 0.0 );
float pointDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );
vec3 pointDiffuseWeight = mix( vec3( pointDiffuseWeightFull ), vec3( pointDiffuseWeightHalf ), wrapRGB );
#else
float pointDiffuseWeight = max( dotProduct, 0.0 );
#endif
pointDiffuse += diffuse * pointLightColor[ i ] * pointDiffuseWeight * lDistance;
// specular
vec3 pointHalfVector = normalize( lVector + viewPosition );
float pointDotNormalHalf = max( dot( normal, pointHalfVector ), 0.0 );
float pointSpecularWeight = specularStrength * max( pow( pointDotNormalHalf, shininess ), 0.0 );
float specularNormalization = ( shininess + 2.0 ) / 8.0;
vec3 schlick = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVector, pointHalfVector ), 0.0 ), 5.0 );
pointSpecular += schlick * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * lDistance * specularNormalization;
}
#endif
#if MAX_SPOT_LIGHTS > 0
vec3 spotDiffuse = vec3( 0.0 );
vec3 spotSpecular = vec3( 0.0 );
for ( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {
vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );
vec3 lVector = lPosition.xyz + vViewPosition.xyz;
float lDistance = 1.0;
if ( spotLightDistance[ i ] > 0.0 )
lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );
lVector = normalize( lVector );
float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - vWorldPosition ) );
if ( spotEffect > spotLightAngleCos[ i ] ) {
spotEffect = max( pow( max( spotEffect, 0.0 ), spotLightExponent[ i ] ), 0.0 );
// diffuse
float dotProduct = dot( normal, lVector );
#ifdef WRAP_AROUND
float spotDiffuseWeightFull = max( dotProduct, 0.0 );
float spotDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );
vec3 spotDiffuseWeight = mix( vec3( spotDiffuseWeightFull ), vec3( spotDiffuseWeightHalf ), wrapRGB );
#else
float spotDiffuseWeight = max( dotProduct, 0.0 );
#endif
spotDiffuse += diffuse * spotLightColor[ i ] * spotDiffuseWeight * lDistance * spotEffect;
// specular
vec3 spotHalfVector = normalize( lVector + viewPosition );
float spotDotNormalHalf = max( dot( normal, spotHalfVector ), 0.0 );
float spotSpecularWeight = specularStrength * max( pow( spotDotNormalHalf, shininess ), 0.0 );
float specularNormalization = ( shininess + 2.0 ) / 8.0;
vec3 schlick = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVector, spotHalfVector ), 0.0 ), 5.0 );
spotSpecular += schlick * spotLightColor[ i ] * spotSpecularWeight * spotDiffuseWeight * lDistance * specularNormalization * spotEffect;
}
}
#endif
#if MAX_DIR_LIGHTS > 0
vec3 dirDiffuse = vec3( 0.0 );
vec3 dirSpecular = vec3( 0.0 );
for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {
vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );
vec3 dirVector = normalize( lDirection.xyz );
// diffuse
float dotProduct = dot( normal, dirVector );
#ifdef WRAP_AROUND
float dirDiffuseWeightFull = max( dotProduct, 0.0 );
float dirDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );
vec3 dirDiffuseWeight = mix( vec3( dirDiffuseWeightFull ), vec3( dirDiffuseWeightHalf ), wrapRGB );
#else
float dirDiffuseWeight = max( dotProduct, 0.0 );
#endif
dirDiffuse += diffuse * directionalLightColor[ i ] * dirDiffuseWeight;
// specular
vec3 dirHalfVector = normalize( dirVector + viewPosition );
float dirDotNormalHalf = max( dot( normal, dirHalfVector ), 0.0 );
float dirSpecularWeight = specularStrength * max( pow( dirDotNormalHalf, shininess ), 0.0 );
/*
// fresnel term from skin shader
const float F0 = 0.128;
float base = 1.0 - dot( viewPosition, dirHalfVector );
float exponential = pow( base, 5.0 );
float fresnel = exponential + F0 * ( 1.0 - exponential );
*/
/*
// fresnel term from fresnel shader
const float mFresnelBias = 0.08;
const float mFresnelScale = 0.3;
const float mFresnelPower = 5.0;
float fresnel = mFresnelBias + mFresnelScale * pow( 1.0 + dot( normalize( -viewPosition ), normal ), mFresnelPower );
*/
float specularNormalization = ( shininess + 2.0 ) / 8.0;
// dirSpecular += specular * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization * fresnel;
vec3 schlick = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( dirVector, dirHalfVector ), 0.0 ), 5.0 );
dirSpecular += schlick * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization;
}
#endif
#if MAX_HEMI_LIGHTS > 0
vec3 hemiDiffuse = vec3( 0.0 );
vec3 hemiSpecular = vec3( 0.0 );
for( int i = 0; i < MAX_HEMI_LIGHTS; i ++ ) {
vec4 lDirection = viewMatrix * vec4( hemisphereLightDirection[ i ], 0.0 );
vec3 lVector = normalize( lDirection.xyz );
// diffuse
float dotProduct = dot( normal, lVector );
float hemiDiffuseWeight = 0.5 * dotProduct + 0.5;
vec3 hemiColor = mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );
hemiDiffuse += diffuse * hemiColor;
// specular (sky light)
vec3 hemiHalfVectorSky = normalize( lVector + viewPosition );
float hemiDotNormalHalfSky = 0.5 * dot( normal, hemiHalfVectorSky ) + 0.5;
float hemiSpecularWeightSky = specularStrength * max( pow( max( hemiDotNormalHalfSky, 0.0 ), shininess ), 0.0 );
// specular (ground light)
vec3 lVectorGround = -lVector;
vec3 hemiHalfVectorGround = normalize( lVectorGround + viewPosition );
float hemiDotNormalHalfGround = 0.5 * dot( normal, hemiHalfVectorGround ) + 0.5;
float hemiSpecularWeightGround = specularStrength * max( pow( max( hemiDotNormalHalfGround, 0.0 ), shininess ), 0.0 );
float dotProductGround = dot( normal, lVectorGround );
float specularNormalization = ( shininess + 2.0 ) / 8.0;
vec3 schlickSky = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVector, hemiHalfVectorSky ), 0.0 ), 5.0 );
vec3 schlickGround = specular + vec3( 1.0 - specular ) * pow( max( 1.0 - dot( lVectorGround, hemiHalfVectorGround ), 0.0 ), 5.0 );
hemiSpecular += hemiColor * specularNormalization * ( schlickSky * hemiSpecularWeightSky * max( dotProduct, 0.0 ) + schlickGround * hemiSpecularWeightGround * max( dotProductGround, 0.0 ) );
}
#endif
vec3 totalDiffuse = vec3( 0.0 );
vec3 totalSpecular = vec3( 0.0 );
#if MAX_DIR_LIGHTS > 0
totalDiffuse += dirDiffuse;
totalSpecular += dirSpecular;
#endif
#if MAX_HEMI_LIGHTS > 0
totalDiffuse += hemiDiffuse;
totalSpecular += hemiSpecular;
#endif
#if MAX_POINT_LIGHTS > 0
totalDiffuse += pointDiffuse;
totalSpecular += pointSpecular;
#endif
#if MAX_SPOT_LIGHTS > 0
totalDiffuse += spotDiffuse;
totalSpecular += spotSpecular;
#endif
#ifdef METAL
gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient + totalSpecular );
#else
gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient ) + totalSpecular;
#endif
#ifdef USE_LIGHTMAP
gl_FragColor = gl_FragColor * texture2D( lightMap, vUv2 );
#endif
#ifdef USE_COLOR
gl_FragColor = gl_FragColor * vec4( vColor, 1.0 );
#endif
#ifdef USE_ENVMAP
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )
vec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );
// http://en.wikibooks.org/wiki/GLSL_Programming/Applying_Matrix_Transforma... // Transforming Normal Vectors with the Inverse Transformation
vec3 worldNormal = normalize( vec3( vec4( normal, 0.0 ) * viewMatrix ) );
#ifdef ENVMAP_MODE_REFLECTION
vec3 reflectVec = reflect( cameraToVertex, worldNormal );
#else
vec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );
#endif
#else
vec3 reflectVec = vReflect;
#endif
#ifdef DOUBLE_SIDED
float flipNormal = ( -1.0 + 2.0 * float( gl_FrontFacing ) );
#else
float flipNormal = 1.0;
#endif
#ifdef ENVMAP_TYPE_CUBE
vec4 envColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );
#elif defined( ENVMAP_TYPE_EQUIREC )
vec2 sampleUV;
sampleUV.y = clamp( flipNormal * reflectVec.y * 0.5 + 0.5, 0.0, 1.0);
sampleUV.x = atan( flipNormal * reflectVec.z, flipNormal * reflectVec.x ) * 0.15915494309189533576888376337251 + 0.5; // reciprocal( 2 PI ) + 0.5
vec4 envColor = texture2D( envMap, sampleUV );
#elif defined( ENVMAP_TYPE_SPHERE )
vec3 reflectView = flipNormal * normalize((viewMatrix * vec4( reflectVec, 0.0 )).xyz + vec3(0.0,0.0,1.0));
vec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );
#endif
#ifdef GAMMA_INPUT
envColor.xyz *= envColor.xyz;
#endif
#ifdef ENVMAP_BLENDING_MULTIPLY
gl_FragColor.xyz = mix( gl_FragColor.xyz, gl_FragColor.xyz * envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_MIX )
gl_FragColor.xyz = mix( gl_FragColor.xyz, envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_ADD )
gl_FragColor.xyz += envColor.xyz * specularStrength * reflectivity;
#endif
#endif
#ifdef USE_SHADOWMAP
#ifdef SHADOWMAP_DEBUG
vec3 frustumColors[3];
frustumColors[0] = vec3( 1.0, 0.5, 0.0 );
frustumColors[1] = vec3( 0.0, 1.0, 0.8 );
frustumColors[2] = vec3( 0.0, 0.5, 1.0 );
#endif
#ifdef SHADOWMAP_CASCADE
int inFrustumCount = 0;
#endif
float fDepth;
vec3 shadowColor = vec3( 1.0 );
for( int i = 0; i < MAX_SHADOWS; i ++ ) {
vec3 shadowCoord = vShadowCoord[ i ].xyz / vShadowCoord[ i ].w;
// if ( something && something ) breaks ATI OpenGL shader compiler
// if ( all( something, something ) ) using this instead
bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );
bool inFrustum = all( inFrustumVec );
// don't shadow pixels outside of light frustum
// use just first frustum (for cascades)
// don't shadow pixels behind far plane of light frustum
#ifdef SHADOWMAP_CASCADE
inFrustumCount += int( inFrustum );
bvec3 frustumTestVec = bvec3( inFrustum, inFrustumCount == 1, shadowCoord.z <= 1.0 );
#else
bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );
#endif
bool frustumTest = all( frustumTestVec );
if ( frustumTest ) {
shadowCoord.z += shadowBias[ i ];
#if defined( SHADOWMAP_TYPE_PCF )
// Percentage-close filtering
// (9 pixel kernel)
// http://fabiensanglard.net/shadowmappingPCF/
float shadow = 0.0;
/*
// nested loops breaks shader compiler / validator on some ATI cards when using OpenGL
// must enroll loop manually
for ( float y = -1.25; y <= 1.25; y += 1.25 )
for ( float x = -1.25; x <= 1.25; x += 1.25 ) {
vec4 rgbaDepth = texture2D( shadowMap[ i ], vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy );
// doesn't seem to produce any noticeable visual difference compared to simple texture2D lookup
//vec4 rgbaDepth = texture2DProj( shadowMap[ i ], vec4( vShadowCoord[ i ].w * ( vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy ), 0.05, vShadowCoord[ i ].w ) );
float fDepth = unpackDepth( rgbaDepth );
if ( fDepth < shadowCoord.z )
shadow += 1.0;
}
shadow /= 9.0;
*/
const float shadowDelta = 1.0 / 9.0;
float xPixelOffset = 1.0 / shadowMapSize[ i ].x;
float yPixelOffset = 1.0 / shadowMapSize[ i ].y;
float dx0 = -1.25 * xPixelOffset;
float dy0 = -1.25 * yPixelOffset;
float dx1 = 1.25 * xPixelOffset;
float dy1 = 1.25 * yPixelOffset;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );
if ( fDepth < shadowCoord.z ) shadow += shadowDelta;
shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );
#elif defined( SHADOWMAP_TYPE_PCF_SOFT )
// Percentage-close filtering
// (9 pixel kernel)
// http://fabiensanglard.net/shadowmappingPCF/
float shadow = 0.0;
float xPixelOffset = 1.0 / shadowMapSize[ i ].x;
float yPixelOffset = 1.0 / shadowMapSize[ i ].y;
float dx0 = -1.0 * xPixelOffset;
float dy0 = -1.0 * yPixelOffset;
float dx1 = 1.0 * xPixelOffset;
float dy1 = 1.0 * yPixelOffset;
mat3 shadowKernel;
mat3 depthKernel;
depthKernel[0][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );
depthKernel[0][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );
depthKernel[0][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );
depthKernel[1][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );
depthKernel[1][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );
depthKernel[1][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );
depthKernel[2][0] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );
depthKernel[2][1] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );
depthKernel[2][2] = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );
vec3 shadowZ = vec3( shadowCoord.z );
shadowKernel[0] = vec3(lessThan(depthKernel[0], shadowZ ));
shadowKernel[0] *= vec3(0.25);
shadowKernel[1] = vec3(lessThan(depthKernel[1], shadowZ ));
shadowKernel[1] *= vec3(0.25);
shadowKernel[2] = vec3(lessThan(depthKernel[2], shadowZ ));
shadowKernel[2] *= vec3(0.25);
vec2 fractionalCoord = 1.0 - fract( shadowCoord.xy * shadowMapSize[i].xy );
shadowKernel[0] = mix( shadowKernel[1], shadowKernel[0], fractionalCoord.x );
shadowKernel[1] = mix( shadowKernel[2], shadowKernel[1], fractionalCoord.x );
vec4 shadowValues;
shadowValues.x = mix( shadowKernel[0][1], shadowKernel[0][0], fractionalCoord.y );
shadowValues.y = mix( shadowKernel[0][2], shadowKernel[0][1], fractionalCoord.y );
shadowValues.z = mix( shadowKernel[1][1], shadowKernel[1][0], fractionalCoord.y );
shadowValues.w = mix( shadowKernel[1][2], shadowKernel[1][1], fractionalCoord.y );
shadow = dot( shadowValues, vec4( 1.0 ) );
shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );
#else
vec4 rgbaDepth = texture2D( shadowMap[ i ], shadowCoord.xy );
float fDepth = unpackDepth( rgbaDepth );
if ( fDepth < shadowCoord.z )
// spot with multiple shadows is darker
shadowColor = shadowColor * vec3( 1.0 - shadowDarkness[ i ] );
// spot with multiple shadows has the same color as single shadow spot
// shadowColor = min( shadowColor, vec3( shadowDarkness[ i ] ) );
#endif
}
#ifdef SHADOWMAP_DEBUG
#ifdef SHADOWMAP_CASCADE
if ( inFrustum && inFrustumCount == 1 ) gl_FragColor.xyz *= frustumColors[ i ];
#else
if ( inFrustum ) gl_FragColor.xyz *= frustumColors[ i ];
#endif
#endif
}
#ifdef GAMMA_OUTPUT
shadowColor *= shadowColor;
#endif
gl_FragColor.xyz = gl_FragColor.xyz * shadowColor;
#endif
#ifdef GAMMA_OUTPUT
gl_FragColor.xyz = sqrt( gl_FragColor.xyz );
#endif
#ifdef USE_FOG
#ifdef USE_LOGDEPTHBUF_EXT
float depth = gl_FragDepthEXT / gl_FragCoord.w;
#else
float depth = gl_FragCoord.z / gl_FragCoord.w;
#endif
#ifdef FOG_EXP2
const float LOG2 = 1.442695;
float fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );
fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );
#else
float fogFactor = smoothstep( fogNear, fogFar, depth );
#endif
gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );
#endif
}
Add a comment